欧美日韩国产高清一区_91视频免费观看网站_久久精品日韩无码_91福利视频导航_久久九九久精品国产免费直播_www.一区二区.com_黑人巨大精品欧美一区二区一视频 _久久人人爽人人爽人人av_日韩一区中文字幕_国产精品欧美日韩一区二区_天天操天天摸天天干_亚洲靠逼com

首頁 > 新車報道 > 新車報道 > 解讀毫末技術論文Cam4DOcc:僅使用攝像頭可實現4D占據預測?

解讀毫末技術論文Cam4DOcc:僅使用攝像頭可實現4D占據預測?

發布時間:2024-04-08 21:11:01

為了確保自動駕駛汽車在行駛中能夠安全、可靠地執行任務,了解周圍環境的變化至關重要。近年來,一些技術能夠通過分析攝像機圖像來估計周圍物體的位置和分布,這對于理解大規模場景的結構非常有幫助。

然而,這些技術主要關注的是當前的3D空間,對于未來物體可能的位置和狀態并沒有太多考慮。

為了解決這個問題,最近,毫末智行聯合上海交大、國防科大、北京理工大學提出了一種新的方法,叫做Cam4DOcc。

這是一個專門為僅使用攝像頭進行4D占用預測而設計的基準測試,用于評估未來一段時間內周圍場景的變化。

Cam4DOcc基準測試的目標是使用攝像頭圖像作為輸入,預測當前和未來短時間內(通常是幾秒內)的3D空間占用狀態。

包括對一般可移動物體(GMO)和一般靜態物體(GSO)的占用狀態進行預測。預測任務又分為多個級別,從預測膨脹的GMO到預測精細的GMO、GSO和自由空間。

Cam4DOcc基準測試為自動駕駛中的4D占用預測提供了一個標準化的評估平臺,使研究人員能夠比較不同算法的性能。通過這些測試,研究人員可以更好地理解和改進自動駕駛系統在理解和預測周圍環境方面的能力。

毫末預測,自動駕駛領域中下一個重要的挑戰將是僅使用攝像頭進行4D占據預測。這項技術不僅可以通過攝像頭圖像擴展時間上的占據預測,還要在BEV格式和預定義類別之外拓展語義/實例預測。

該論文的主要核心貢獻包括:

提出了Cam4DOcc基準,這是第一個促進基于攝像頭的4D占用預測未來工作的基準。

通過利用現有數據集,提出了自動駕駛場景中預測任務的新數據集格式。

提供了四種新穎的基于攝像頭的4D占用預測基線方法,其中三種是現成方法的擴展。

還引入了一個新穎的端到端4D占用預測網絡,展示了強大的性能,為研究者提供了有價值的參考。

論文引入了標準化評估協議,并通過Cam4DOcc基于該協議進行了全面的實驗和詳細的分析。

下面我們來詳細剖析這篇論文。

01.

解鎖自動駕駛時空預測的超能力

該論文首先提出了一個新的數據集格式。

該格式基于現有的數據集(包括nuScenes、nuScenes-Occupancy和Lyft-Level5)進行了擴展和調整,這樣就可以適應4D占用預測的需求,這里需求就包括關于可移動和靜態物體的連續占用狀態,以及它們的3D向后向心流的信息。

下圖為以原始和Scenes-Occupancy為基礎,在Cam4DOcc中構建數據集的整體流程。

通過利用現有數據集,提出了自動駕駛場景中預測任務的新數據集格式被重組為一種新穎的格式,既考慮了一般的活動類別,也考慮了靜態類別,用于統一的四維空間占用預測任務。

如下圖所示,論文首先將原始nuScenesnu分割成時間長度為N = Np+Nf+1的序列。然后按順序對可移數據集動物體進行語義和實例注釋,并收集到 GMO 中。

包括自行車、公共汽車、汽車、建筑、摩托車、拖車、卡車和行人,它們都被轉換為當前坐標系(t = 0)。

之后,再對當前3D空間進行體素化,并使用邊界框注釋語義/實際標簽附加到可移動對象的網格。

值得注意的是,在此過程中,一旦出現以下情況,無效實例就會被丟棄。

(1)如果它是 Np 個歷史幀中新出現的對象,則其可見性在 6 個攝像機圖像中低于 40%

(2)它首先出現在 Nf 個傳入幀中或者

(3)它超出了在 t = 0 時預定義的范圍(H,W,L)。可見性通過相機圖像中顯示的實例的所有像素的可見比例來量化[29]。基于恒定速度假設[22]、[44],利用順序注釋來填充缺失的中間實例。相同的操作也適用于 Lyft-Level5 數據集。

最后,論文作者利用Lyft-Level5數據集生成3D中的實例關聯生成三維向心流。利用此3D流來提高基于攝像頭的4D 占用預測的準確性。

該論文的目標不僅是預測GMO的未來位置,還要估計GSO的占用狀態和安全導航所需的自由空間。因此,作者們又進一步將原始nuScenes中的順序實例注釋與從nuScenes-Occupancy轉換到當前幀的順序占用注釋連接起來。這種組合平衡了自動駕駛應用中下游導航的安全性和精度。GMO標簽借鑒了原始nuScenes的邊界框標注,可以看作是對可移動障礙物進行了膨脹操作。GSO 和免費標簽由nuScenes-Occupancy提供,專注于周圍大型環境的更細粒度的幾何結構。

介紹完數據集,接下來是評估協議。為了充分發揮僅使用攝像頭的 4D 占用預測性能,作者在 Cam4DOcc 中建立了具有不同復雜程度的各種評估任務和指標。

論文在標準化評估協議中引入了四級占用預測任務:

(1)預測膨脹的GMO:所有占用網格的類別分為GMO和其他,其中來自nuScenes和LyftLevel5的實例邊界框內的體素網格被注釋作為GMO。

(2)預測細粒度GMO:類別也分為GMO和其他,但GMO的注釋直接來自nuScenes-Occupancy的體素標簽,去除了第2節中介紹的無效網格。

(3)預測膨脹的GMO、細粒度GSO和自由空間:類別分為來自邊界框注釋的GMO、遵循細粒度注釋的GSO和自由空間。

(4)預測細粒度GMO、細粒度GSO和自由空間:類別分為GMO和GSO,均遵循細粒度注釋,和自由空間。由于 Lyft-Level5 數據集缺少占用標簽,因此作者僅對其第一個任務進行指標評估。對于所有四個任務,作者使用交并集(IoU)作為性能指標。作者分別評估當前時刻 (t = 0) 占用率估計和未來時間 (t ∈ [1, Nf ]) 預測:

其中St'和St分別表示時間戳t處的估計體素狀態和真實體素狀態,更接近當前時刻的時間戳的IoU對最終的IoUf貢獻更大。這符合“接近時間戳的占用預測對于后續運動規劃和決策更為重要”的yuan。

接下來,論文作者們又提出了四種基線。

為了建立一個全面比較的基準,基于攝像頭的感知和預測功能,論文引入了四種不同類型的基線方法。

這些方法包括靜態世界占用模型、點云預測的體素化、基于2D-3D實例的預測。這些基線方法為論文提供了一個框架,以便可以比較和評估各種方法在當前和未來占用估計方面的性能。

靜態世界占用模型可以理解為一種假設環境在短時間內保持不變的簡單方法。在這種假設下,當前估計的占用網格可以作為所有未來時間步的預測。這種方法僅基于靜態世界假設,即在預測的時間范圍內,場景中的物體不會發生顯著的運動變化。(如下圖)

點云預測的體素化是指將點云預測的結果轉換為體素(voxel)表示的一種方法。

一般這個過程涉及幾個步驟:

深度估計:首先,使用環視攝像頭捕獲的圖像,通過深度估計算法生成連續的周圍視圖深度圖。

點云生成:接著,通過射線投射(ray casting)技術,將深度圖轉換為3D點云。這個過程模擬了激光雷達(LiDAR)的工作原理,通過多個攝像頭的深度信息來重建三維空間中的點。

點云預測:使用現有的點云預測方法(如PCPNet)來預測未來時間步的3D點云。這些方法通常基于當前的點云數據,通過學習點云隨時間變化的模式來預測未來的點云。

語義分割:預測得到的點云通過語義分割算法(如Cylinder3D)進行處理,以提取可移動和靜態物體的點級標簽。

體素化:最后,將預測得到的點云轉換為體素表示,即將每個點映射到一個三維網格中,形成占用網格(occupancy grid)。這樣,每個體素代表一個空間體積,其值表示該空間是否被物體占據。

這種方法的關鍵作用在于,它能夠將點云預測的結果轉換為一種適合于占用預測的格式,即體素化表示。通過這種方式,可以更好地評估和比較不同預測方法在自動駕駛場景中對動態和靜態物體未來狀態的預測能力。

基于2D-3D實例的預測指的是一種基于實例的預測方法,它使用環繞視圖攝像頭來預測近未來的語義場景,包括車輛、行人等動態物體的位置和運動。這種方法是作為Cam4DOcc基準中的一個基線提出的,用于評估和比較不同的4D占用預測方法。

當然,在智駕網看來,基于2D-3D實例的預測方法也有一定局限性。

這個方法涉及到2D實例預測的步驟,2D實例預測是指使用2D鳥瞰圖(BEV)格式的實例預測算法(如PowerBEV)來預測動態物體在未來時間步的語義分布。這些算法直接從多視圖2D攝像頭圖像中提取BEV特征,并結合時間信息來估計未來的實例分布。

局限就在于它依賴于2D BEV格式的預測,并且假設所有動態物體在同一高度上運動,這可能不適用于所有場景,特別是在復雜的城市環境中。

上述三種基線在執行任務過程中都存在局限性,因為不能直接預測未來三維空間的占用狀態,它們需要額外的后處理——根據現有結果擴展和轉化為四維空間占用預測。

因此,論文也提出了端到端的4D占用預測網絡OCFNet。

02.

OCFNet:端到端4D占用預測的創新

OCFNet能夠直接從攝像頭圖像中預測3D空間的未來占用狀態,而不需要依賴于2D到3D的轉換。

OCFNet通過接收連續的環繞視圖攝像頭圖像,能夠同時預測當前占用狀態和未來占用變化。該網絡利用多幀特征聚合模塊和未來狀態預測模塊,不僅預測了物體的占用狀態,還預測了物體的運動流,為自動駕駛車輛提供了更為豐富和精確的信息。

最后論文結果分析,OCFNet的性能在多個任務上超過了第一段分析的三個基線方法(靜態世界占用模型、點云預測的體素化、2D-3D實例基礎預測)。

比如下圖中的實驗任務是預測nuScenes和LyftLevel5上的GMO。這里OpenOccupancy-C、PowerBEV和OCFNet僅使用膨脹的GMO標簽進行訓練,而PCPNet則通過整體點云進行訓練。OCFNet和OCFNet†優于所有其他基線,在 nuScenes上的IoUf和IoUf'上超過基于BEV的方法12.4%和13.3%。在Lyft-Level5上,作者的OCFNet和OCFNet†在 IoUf和IoUf'方面始終優于PowerBEV-3D 20.8%和21.8%。

下圖顯示了OCFNet和CFNet†對nuScenes GMO占用率進行預測的結果,這表明僅使用有限數據訓練的OCFNet仍然可以合理地捕獲GMO占用網格的運動。此外,預測對象的形狀在未來的時間步長中會顯著失去一致性。OpenOccupancy-C的性能遠優于點云預測基線,但與PowerEBV-3D和OCFNet相比,估計當前占用率和預測未來占用率的能力仍然較弱。

通過在提出的Cam4DOcc基準上運行所有基線方法,作者收集了詳細的性能數據。評估指標包括交并比IoU和視頻全景質量(VPQ),這些指標衡量了模型在當前和未來時間步的占用預測準確性。

結果表明,OCFNet在多個任務上都取得了更高的IoU分數,這表明在預測當前和未來的占用狀態方面更為準確。

為了進一步證明OCFNet的優勢,作者還進行了消融研究,展示了網絡中不同組件(如流預測頭)對性能的貢獻。

下圖實驗表明,在當前和未來的占用率估計中,完整的OCFNet比沒有流預測頭的OCFNet增強了約 4%。原因可能是 3D 流程指導學習每個時間間隔的 GMO 運動,從而幫助模型確定下一個時間戳中占用估計的變化。

簡單來講,OCFNet的優勢在于,通過端到端的方式直接預測未來的占用狀態,減少了傳統方法中的偽影,提供了更準確的預測結果。

盡管OCFNet取得了顯著的成果,但如若應用在未來的工作上,對于更長時間段內多個移動物體的預測,論文認為這一任務仍然具有挑戰性。不過未來的工作可以在此基礎上進一步提高預測的準確性和魯棒性。

03.

說到最后,端到端的技術興起背后

馬斯克的第一性原理同樣可以化套用在自動駕駛的能力上。

如果從第一性原理來講,自動駕駛就是一個序列到序列的映射過程,輸入的是一個傳感器信號序列,可能包括多個攝像頭采集到的視頻、Lidar采集到的點云、GPS、IMU 等各類信息,輸出的是一個駕駛決策序列,例如可以是駕駛動作序列,也可以輸出軌跡序列再轉為操作動作。

這個過程與大部分AI任務基本一致,這種映射過程就相當于一個函數y= f(x),但實現這種函數難度較大,任務復雜,一般解決方式包括分治法、端到端、傳統分治法等。

端到端的方式原理最為簡單——直接尋找一個函數實現y=f(x)。

相比之下,端到端自動駕駛不進行任務切分,希望直接輸入傳感器數據、輸出駕駛決策(動作或者軌跡),從而拋棄傳統自動駕駛里的感知、預測、規劃、控制等各類子任務。這種方式有明顯的優勢,例如:

•效果上:不但系統更簡單,還能實現全局最優。

•效率上:由于任務更少,避免了大量重復處理,可以提高計算效率。

•數據收益:不需要大量的人工策略、只需要采集足夠多的優質駕駛數據來訓練即可,可以通過規模化的方式(不斷擴展數據)來不斷提升系統的能力上限。

一個典型的端到端自動駕駛系統如圖所示:

輸入:大部分自動駕駛汽車都裝載了攝像頭、Lidar、毫米波雷達等各類傳感器,采集這些傳感器的數據,輸入深度學習系統即可。

輸出:可以直接輸出轉向角、油門、剎車等控制信號,也可以先輸出軌跡再結合不同的車輛動力學模型,將軌跡轉為轉向角、油門、剎車等控制信號。

可見,端到端自動駕駛系統就像人類的大腦,通過眼睛、耳朵等傳感器接收信息,經過大腦處理后,下達指令給手腳執行命令……但是這種簡單也隱藏了巨大的風險,例如可解釋性很差,無法像傳統自動駕駛任務一樣將中間結果拿出來進行分析;對數據的要求非常高,需要高質量的、分布多樣的、海量的訓練數據,否則 AI 就會實現垃圾進垃圾出。

與傳統的自動駕駛方式對比可見,同樣的輸入、同樣的輸出,傳統自動駕駛包含多個任務(多個模塊),但是端到端只有一個任務。此處容易產生一個誤區,即認為傳統的自動駕駛是多模塊的、端到端自動駕駛是單模塊的,把分模塊與分任務的概念搞混了。

傳統的自動駕駛是分任務的,必然是多個模塊。端到端自動駕駛可以用單模塊來實現,當然也可以用多模塊來實現,其區別在于是否端到端訓練。分任務系統是每個任務獨立訓練、獨立優化、獨立測評的,而端到端系統是把所有模塊看成一個整體進行端到端訓練、端到端測評的。

例如2023年CVPR best paper提出的UniAD就是一種分模塊端到端訓練方式,這種方式通過端到端訓練避免了多任務訓練的融合難題實現全局最優,又保留了分模塊系統的優勢、可以拋出中間模塊的結果進行白盒化分析,反而更具靈活性對部署也更友好,如圖所示:

分任務的自動駕駛系統更像model centric系統,開發者通過不斷優化各個模型來提升各個任務的效果。而端到端自動駕駛則更像data centric系統,通過對數據的調優來提升系統效果。

早年,由于自動駕駛積累的數據還非常少,端到端系統的效果往往比較差。最近幾年,隨著帶高階輔助駕駛功能的量產車大規模落地,通過海量量產車可以采集到豐富的駕駛數據,覆蓋各類場景,再加上最近幾年 AI 算力的蓬勃發展,端到端自動駕駛在海量數據、海量算力的加持下,取得了突破性進展。

以特斯拉為例,通過遍布全球的幾百萬輛量產車,可以采集到足夠豐富、足夠多樣的數據,再從中選出優質數據,在云端使用數萬張 GPU、以及自研的 DOJO 進行訓練和驗證,使得端到端自動駕駛能夠從 paper 變成 product。

到 2023 年初,特斯拉就聲稱已經分析了從特斯拉客戶的汽車中收集的1000萬個視頻片段(clips),特斯拉判斷完成一個端到端自動駕駛的訓練至少需要100萬個、分布多樣、高質量的clips才能正常工作。

特斯拉通過分布在全球的幾百萬量產車,基于影子模式,每當自動駕駛決策與人類司機不一致時,就會采集并回傳一個 clip,已經累積了 200P 以上的數據,不管是數據規模、數據分布還是數據質量上都遙遙領先。為了能在云端處理這些數據,當前特斯拉擁有近10萬張A100,位居全球top5,預計到今年底會擁有100EFlops的算力,并針對自動駕駛自研了Dojo,在算力上同樣遙遙領先。

端到端的挑戰比當前帶來的驚喜感要更多。

從特斯拉的開發經驗來看,端到端自動駕駛門檻頗高,其所需的數據規模、算力規模遠遠超出國內企業的承受能力。

新車報道更多>>

又一款十萬級旅行車?吉利銀河A7旅行版曝光,競爭海豹06旅行? 對標奔馳大G,寶馬或推出一款全新硬派越野豪華SUV代號G74 “撞名”理想,東風風神L8同樣主打“家庭牌” 7月“反季”增長34.2%,上汽以“七連漲”鞏固頭部車企優勢 繼AC米蘭和皇家馬德里后,寶馬又與一家歐洲老牌俱樂部建立合作 引領越野潮向,這就是坦克的力量 獨立試駕小米SU7 Ultra:你能買到的“最快車” 19萬買240km純電續航+激光雷達,領克10 EM-P真香還是陷阱? 2025年寧德市市屬學校招聘緊缺急需及高層次人才公告 2024年黔東南臺江縣人民醫院招聘臨聘人員公告 2024年湖北省三峽大學附屬仁和醫院第二批專項招聘工作人員公告(5人) 2025年“宜昌市招才興業”教育系統事業單位校園專項招聘公告•湖南師范大學站(4人) 新款瑞虎8 PLUS插混價格大幅下探 與宋L DM-i該如何選 新一代MG5正式上市 驚爆一口價6.59萬元起 一汽豐田bZ3C前景展望:預計售價17.58萬元起 定位與宋L EV接近 預計售價16.99萬元起 星途星紀元ES增程版前瞻 2024年吉安幼兒師范高等專科學校招聘教師公告 2024年??建設職業技術學院醫務所護士招聘公告 2024年贛州市招聘綜合行政執法隊工作人員公告 2024年贛州市會昌縣人民法院招聘聘用制工作人員公告 2024年南昌市婦女兒童活動中心招聘公告 2024年吉安市吉水縣城北醫院編外工作人員招聘公告 2024年廈門市集美區杏東中學非在編教師招聘簡章 2024年廈門市集美區僑英小學非在編教師招聘簡章 一汽豐田RAV4榮放 搭載2.0L發動機+CVT無級變速箱,是否值得購入? 7座布局設計,搭載2.0L混動系統的廣汽傳祺E8,是否適合家用? 適合多孩家庭,大六座布局的東風奕派eπ008,是否值得購入? 外觀顏值在線,純電續航570km、支持800V快充的小鵬G9,適合家用 24.29萬元起售,定位中大型SUV,空間寬敞,大眾攬巡適合家用 用車成本低,空間寬敞,適合家用的SUV,傳祺GS4 MAX值得一看?
蜜臀久久99精品久久久无需会员 | 午夜精品福利一区二区三区av| 亚洲成熟少妇视频在线观看| 日韩欧美综合一区| 亚洲熟女毛茸茸| 久久久亚洲精品视频| 欧美日韩在线精品一区二区三区激情| 久久精品久久99| 中文字幕亚洲综合久久筱田步美 | 一级二级黄色片| 久久精品91久久香蕉加勒比| 超碰在线人人干| 国产成人在线一区| 欧美一级特黄aaaaaa| 久久婷婷开心| 亚洲欧美日韩国产中文在线| 偷拍女澡堂一区二区三区| 国产精品美女在线观看| 欧美性xxxx极品高清hd直播| 午夜一级免费视频| 日本精品二区| 欧美视频免费在线| 天堂av.com| 精品国产91久久久久久久妲己| 久久精品视频日本| 亚洲国产无码精品| 日韩视频免费在线播放| 精品国产区一区二区三区在线观看| 2021久久国产精品不只是精品| 日本一级免费视频| 日本a在线天堂| 男人天堂手机在线视频| 国产福利在线免费| 最新中文字幕视频| 亚洲国产精品一区二区久久hs| 午夜视频在线网站| 亚洲欧美日产图| 97视频在线观看播放| 欧美视频在线观看一区二区| 26uuu亚洲综合色| 亚洲男人第一av| 5566日本婷婷色中文字幕97| 国产在线看一区| 精品中文字幕av| 奇米四色中文综合久久| 日韩一区二区欧美| 国产精品免费视频观看| 国产91露脸合集magnet| 美女任你摸久久| 精品久久久久久国产| 精品国产一区二区三区忘忧草| 国产亚洲激情视频在线| 中文字幕国产亚洲2019| 亚洲免费伊人电影在线观看av| 中文字幕五月欧美| 国产人妖一区二区三区| 37p粉嫩大胆色噜噜噜| 国产天堂视频在线观看| 欧美日韩另类在线| 中文在线字幕免费观| 国产人妻精品一区二区三区| 尤物网站在线看| 亚洲综合中文字幕在线| 播五月开心婷婷综合| 亚洲成人黄色av| 成人18视频免费69| 日本少妇激三级做爰在线| 日本不卡久久| 国产区欧美区日韩区| 粉嫩av免费一区二区三区| 成人短视频在线观看免费| 男女一区二区三区| 国产又大又黄视频| 亚洲精品喷潮一区二区三区| 亚洲中文字幕在线观看| 免费a v网站| 久久久久99精品成人片| 亚欧精品在线| 极品日韩久久| 天天av天天翘天天综合网| 黄色av一区二区| 国产在线青青草| 欧美一区二区视频97| 国产精品视频26uuu| 日本高清+成人网在线观看| 亚洲天堂一区二区三区| 欧美日韩国产区一| 欧美精品久久久久久久免费观看| 青青草国产精品视频| 三级黄色录像视频| 天堂在线资源库| 亚洲女子a中天字幕| 国产精品久久久久久久久免费樱桃| 粉嫩在线一区二区三区视频| 天堂在线视频免费| 中文字幕在线视频第一页| 无码人妻丰满熟妇精品区| 人与动物性xxxx| 神马久久久久久久| 日韩在线一卡二卡| 日韩欧美一区二区三区四区| 欧美成人精品在线| 欧洲精品一区二区三区在线观看| 夜夜爽夜夜爽精品视频| 亚洲精品久久在线| 国内精品久久久久影院优| 亚洲性视频网址| 国产suv精品一区二区三区88区| av五月天在线| 91精东传媒理伦片在线观看| 《视频一区视频二区| 9191久久久久久久久久久| 678五月天丁香亚洲综合网| 中文字幕精品在线| 99热在线国产| 免费在线看黄色片| 久久嫩草精品久久久久| 99久久国产综合精品色伊| 国产精品婷婷午夜在线观看| 日韩欧美福利视频| 亚洲精品在线观| 国产精品免费久久| 视频精品一区二区| 国产乱人乱偷精品视频a人人澡| 国产精品免费人成网站酒店| 神马午夜在线观看| 久久99精品视频| 国产乱人伦精品一区二区在线观看| 亚洲精品综合在线| 欧美一区二区三区日韩| 国产成人精品视频在线观看| 亚洲精品永久视频| 六月婷婷色综合| 亚洲国产成人久久综合| 不卡中文字幕在线| 波多野吉衣中文字幕| 久久亚洲国产成人精品性色| 老熟妇仑乱一区二区av| 天堂一区二区在线免费观看| 国产精品卡一卡二卡三| 亚洲成a人v欧美综合天堂| 亚洲成精国产精品女| 亚洲不卡一区二区三区| 97se视频在线观看| 免费看日b视频| 久久久久久久久久久久国产| 国产激情91久久精品导航| 免费在线观看成人| 99久久精品99国产精品| 911精品国产一区二区在线| 国产精品美女免费看| 欧美人妻一区二区三区| 一卡二卡欧美日韩| 日本老太婆做爰视频| 五月婷婷色丁香| 欧美日韩激情视频| 国产精品夫妻激情| 亚洲精品一区二区三区樱花| 日韩精品―中文字幕| 影音先锋男人看片资源| 肉丝袜脚交视频一区二区| 伊人一区二区三区| 亚洲一级片在线观看| 欧美一级在线观看| 色中色综合成人| 11024精品一区二区三区日韩| 久久青草欧美一区二区三区| 欧美精品一区二区三区高清aⅴ| 噜噜噜噜噜久久久久久91| 91青草视频久久| 李宗瑞91在线正在播放| 亚洲乱色熟女一区二区三区| 欧美日韩aaaaa| 午夜欧美性电影| 91精品中文字幕| 国产中文字幕精品| 国产精品看片你懂得| 日韩精品一区二区三区在线播放| 国产精品91在线观看| 在线码字幕一区| 真人做人试看60分钟免费| 亚洲一区二区三区四区av| 国产精品青草久久| 国产欧美一区二区三区另类精品 | 亚洲国产另类久久久精品极度| 五月天婷婷激情视频| 任你操这里只有精品| 久久狠狠婷婷| 欧美性高清videossexo| 欧美色倩网站大全免费| 欧美国产视频一区二区| 中文字幕一区二区三区精彩视频| 中文字幕一区二区人妻痴汉电车| 欧美贵妇videos办公室| 久久青青草原亚洲av无码麻豆| 久久天堂电影网| 亚洲av无码一区二区三区人| 欧美日韩色一区| 凹凸国产熟女精品视频| a在线观看视频| 欧美亚州韩日在线看免费版国语版| 久久99蜜桃综合影院免费观看| 日本高清一区二区视频| 懂色av.com| 国产福利一区二区| 中文字幕日韩av电影| 美女av免费观看| 国产日韩精品入口| 成年人免费在线播放| 久久66热re国产| 亚洲天堂男人的天堂| 538任你躁在线精品免费| 天天操天天干天天舔| 亚洲成人a**站| 91国内产香蕉| 日韩影院一区| 欧美一区二区三区成人片在线| 这里只有精品视频在线观看| 蜜臀久久99精品久久久酒店新书| 成av人片一区二区| 国产精品初高中精品久久| 国产主播在线播放| 午夜精品久久一牛影视| 68精品久久久久久欧美| 91丝袜在线观看| 偷拍与自拍一区| 亚洲va久久久噜噜噜久久天堂| 久久偷拍免费视频| 国产清纯白嫩初高生在线观看91 | 欧美一区2区视频在线观看| 99亚洲国产精品| 日韩精品国产欧美| 国产精品露脸av在线| av免费观看网址| 九九九久久国产免费| 欧美一级片在线视频| 中文字幕五月欧美| 欧美精品激情blacked18| 波兰性xxxxx极品hd| 亚洲国产三级在线| 欧美精品一区二区三区在线四季 | 久久伊人蜜桃av一区二区| 久久久久久草| 日本特黄一级片| 亚洲色图清纯唯美| 久久久精品999| 日批视频在线免费看| 中文字幕乱码无码人妻系列蜜桃| 樱花草国产18久久久久| 国产成一区二区| 中文字幕日韩三级片| 国产91精品在线观看| 久久激情视频免费观看| 欧美美女性视频| 韩日av一区二区| 欧美另类极品videosbest最新版本| 性鲍视频在线观看| 国产成人高清在线| 日本精品视频网站| 国产1区2区3区4区| 久久在精品线影院精品国产| 国产精品探花在线播放| 国产精品进线69影院| 粉嫩精品一区二区三区在线观看| 老司机福利在线观看| 亚洲免费电影在线| 日本婷婷久久久久久久久一区二区| 无码免费一区二区三区| 91精品国产91久久久久久一区二区| 日韩欧美一区二区三区| 粉嫩av四季av绯色av第一区| 狠狠狠狠狠狠狠| 日韩欧美国产一区二区三区| 97在线国产视频| 欧美aaa在线| 欧美成人精品在线播放| 少妇献身老头系列| 国产三级精品三级| 不卡的在线视频| 亚洲国产欧美另类丝袜| 午夜欧美性电影| 日韩成人av影视| 国产一区视频观看| 久久国产视频播放| 亚洲成色777777女色窝| 可以看的av网址| 亚洲欧洲中文日韩久久av乱码| 蜜桃精品久久久久久久免费影院| 中文字幕+乱码+中文字幕明步| 日韩高清欧美高清| 国产传媒免费观看| 久久久久久久久久久电影| 91九色极品视频| 丰满岳乱妇国产精品一区| 欧美在线视频观看| 一级做a爱片性色毛片| 国内外成人免费激情在线视频| 精品人妻无码一区二区性色| 久久国产福利国产秒拍| 国产一区二区三区在线视频 | 伊人男人综合视频网| 免费精品在线视频| 精品一区二区三区四区在线| 亚洲不卡的av| 日韩av在线免费观看| 亚洲av无码国产精品久久| 欧美性视频一区二区三区| 特黄特黄一级片| 欧美精品在欧美一区二区少妇| 中文字幕一区二区人妻电影丶| 在线播放中文字幕一区| 黑森林av导航| 欧美一区二区网站| 欧美激情视频二区| 亚洲视频视频在线| 久久国产乱子伦精品| 欧美夜福利tv在线| 日韩在线视频免费| 欧美精品一区二区三区久久| 91在线视频网址| 欧美视频第一区| 精品久久久久久国产| 精品成人久久久| 99国内精品久久久久久久软件| 国产一区999| 免费精品视频一区| 99re成人精品视频| 青青青在线视频免费观看| 欧美手机在线视频| 欧美国产日韩视频| 91国产丝袜播放在线| 韩剧1988在线观看免费完整版| 米奇777在线欧美播放| 91精品国产沙发| 黄色手机在线视频| 国产欧美一区二区三区沐欲| 精品国产一区二区三区日日嗨| 成人在线一区二区三区| 免费看污污网站| 久久伊人91精品综合网站| 麻豆中文一区二区| 欧美激情第四页| 九九热r在线视频精品| 成人深夜在线观看| av网页在线观看| 国产精品99久久久久久www| 久久久久九九视频| 国精产品久拍自产在线网站| 国产精品入口尤物| 亚洲精品久久久蜜桃| 91大神福利视频| 欧美日韩一区二区视频在线 | 亚洲国产激情av| 蜜臀av一区二区三区有限公司| 国产精品一区二区久久精品| 国产精品不卡在线| 日韩欧美亚洲国产| 日韩精品欧美专区| 91精品婷婷国产综合久久性色| 国产精品毛片一区二区在线看舒淇| 亚洲日本理论电影| 日韩电影网在线| 日韩电影在线看| 国产成人无码一区二区在线观看| 国产精品久久久久久久久久久久久 | 国产精品久久久久久久天堂| 亚洲免费观看高清在线观看| 高清乱码免费看污| 免费看国产一级片| 91国偷自产一区二区三区的观看方式 | 一级黄色片免费| 97超碰青青草| 欧美成人精品在线视频| 久久久久久亚洲综合| 国产亚洲第一页| 亚洲高清视频一区| 色伊人久久综合中文字幕| 黄色成人一级片| 日韩无码精品一区二区| 草莓视频一区| 欧美一激情一区二区三区| 日韩二区在线观看| 国产无遮挡在线观看| 在线不卡视频一区二区| 久久91精品国产91久久跳| 亚洲影院在线观看| 日本午夜精品视频在线观看| 久久精品色妇熟妇丰满人妻| 日韩视频一二三| 国产欧洲精品视频| 主播福利视频一区| 欧美性高跟鞋xxxxhd| 国产成人精品免费网站| 亚洲第一区av| 视频国产一区二区| 麻豆传传媒久久久爱| 午夜精品福利一区二区| 日韩男女性生活视频| 色狠狠av一区二区三区香蕉蜜桃| 91精品福利在线| 久久国内精品视频| 九九久久免费视频| 在线观看免费不卡av| 国产欧美日韩一区二区三区| 欧美成人a∨高清免费观看| 日韩精品五月天| 91精品国自产在线| 日韩中文字幕二区| 国产精品福利片| 91精品国产一区二区三区|